Loss of astrocytic domain organization in the epileptic brain.

نویسندگان

  • Nancy Ann Oberheim
  • Guo-Feng Tian
  • Xiaoning Han
  • Weiguo Peng
  • Takahiro Takano
  • Bruce Ransom
  • Maiken Nedergaard
چکیده

Gliosis is a pathological hallmark of posttraumatic epileptic foci, but little is known about these reactive astrocytes beyond their high glial fibrillary acidic protein (GFAP) expression. Using diolistic labeling, we show that cortical astrocytes lost their nonoverlapping domain organization in three mouse models of epilepsy: posttraumatic injury, genetic susceptibility, and systemic kainate exposure. Neighboring astrocytes in epileptic mice showed a 10-fold increase in overlap of processes. Concurrently, spine density was increased on dendrites of excitatory neurons. Suppression of seizures by the common antiepileptic, valproate, reduced the overlap of astrocytic processes. Astrocytic domain organization was also preserved in APP transgenic mice expressing a mutant variant of human amyloid precursor protein despite a marked upregulation of GFAP. Our data suggest that loss of astrocytic domains was not universally associated with gliosis, but restricted to seizure pathologies. Reorganization of astrocytes may, in concert with dendritic sprouting and new synapse formation, form the structural basis for recurrent excitation in the epileptic brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic dysfunction of astrocytic inwardly rectifying K+ channels specific to the neocortical epileptic focus after fluid percussion injury in the rat.

Astrocytic inwardly rectifying K(+) currents (I(KIR)) have an important role in extracellular K(+) homeostasis, which influences neuronal excitability, and serum extravasation has been linked to impaired K(IR)-mediated K(+) buffering and chronic hyperexcitability. Head injury induces acute impairment in astroglial membrane I(KIR) and impaired K(+) buffering in the rat hippocampus, but chronic s...

متن کامل

An Immunohistochemical Study of Cyclin D1 Expression in Astrocytic Tumors and its Correlation with Tumor Grade

Background & Objective: Glioblastoma-multiforme is the high grade form of astrocytic tumors with a short survival time, which are the most common type of brain tumors. Therefore, finding new therapeutic options is essential. Cyclin D1 is expressed in some human malignancies and can be a potential target for therapeutic intervention. The aim of the present study was to determine...

متن کامل

Control of epileptic seizures by electrical low frequency deep brain stimulation: A review of probable mechanisms

Epilepsy is the most common neurological disease with no definitive method in treatment. Notably, the main way to treat and control epileptic seizures is drug therapy. However, about 20-30% of patients with epilepsy are drug resistant and require other therapeutic manners. Deep brain stimulation is a new therapeutic strategy for these patients. Conspicuously, there are no clear answers for basi...

متن کامل

O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...

متن کامل

Effects of Chlorogenic Acid on Epileptic Behavior and mRNA Expressions of Brain Derived Neurotrophic Factor in the Brain of Aged Rats

Introduction: The present study was conducted to evaluate the effect of Chlorogenic Acid (CA) and Diazepam (DZP) on epileptic complication that induced by repetitive intra-peritoneal injections of Pentylenetetrazle (PTZ) in aged rats.   Methods: Twenty-four month-old male Wistar rats (age > 12 months, 300-350 g) were divided in 4 experimental groups. Animal in control group (PTZ + Vehicle) re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 13  شماره 

صفحات  -

تاریخ انتشار 2008